Readout Gireh Families Based on Hidden Layer in the Underlying Structure

Document Type : Research Paper

Authors

1 PhD. Student, Department of Islamic Architecture, Faculty of Architecture and Urbanism, Tabriz Islamic Art University, Tabriz, Iran.

2 Professor, faculty of Architecture and Urbanism, Tabriz Islamic Art University, Iran,Corresponding Author.

Abstract

 
 
The dynamic relationship between culture and art influences both domains significantly. Within various cultures, the adoption of decorative patterns holds particular significance. The selection and evolution of decorative patterns are influenced by each culture's context. Historical artifacts reveal that geometric decorations have long played a central role in human culture, undergoing progressive development over time. A subfield of geometry known as "Girehes" has extensively permeated Iranian-Islamic architecture, directly influencing its aesthetic foundation. The realm of Girehes intertwines mathematics and aesthetics, originating from a context of robust mathematical inquiry. Although historical records are scarce, they suggest that adept practitioners of practical geometry orchestrated the design of Girehes found on historical monuments. However, these designers rarely sought to establish a purely mathematical or theoretical basis for their designs.
Gireh's principles, rooted in mathematical foundations, have captivated contemporary researchers worldwide, owing to their mathematical underpinnings. Surprisingly, adherence to geometric and mathematical principles has not stifled the diversity within design and structure. On the contrary, artists during the Islamic era expanded the scope of geometric patterns with remarkable diversity. Notably, one prominent classification system within Girehes revolves around their respective families. This taxonomy encompasses Acute, Median, Obtuse, and Two-point categories, based on the angle formed by the lines of the "Shamseh," a central motif that reverberates across the entire Gireh design.
However, it's noteworthy that not all Girehes adhere to a specific angle formed by the Shamseh lines. Nevertheless, a substantial majority of researchers tend to rely on a categorization hinging on angles of 36 degrees (Acute), 72 degrees (Median), 108 degrees (Obtuse), and Two-point, due to their prevalence. It's essential to recognize that the angles attributed to Gireh families are not universally applicable. Variations include Girehes featuring angles of 30°, 60°, 90°, and Two-point, or angles of 45°, 90°, 135°, and Two-point.
To address questions surrounding the diverse angles between star lines leading to Gireh classification into various pattern families and the structural rationale behind the modular arrangement of angles within these families, this study employs a descriptive-analytical approach. It leverages library resources to delve into the structure of six-, eight-, ten-, and twelve-point Girehes, aiming to unveil the geometric underpinnings of Gireh families and the correlation between angles in different families and the Girehes' structures.
Girehes, part of the Islamic artistic tradition, comprise tessellations formed by regular geometric shapes harmoniously arranged to maintain uniformity. Known as "Gireh-Work," this form of geometric decoration often juxtaposes the "Shamseh" motif with polygonal elements to create a balanced composition. Traditional masters and modern research corroborate the notion that Gireh hinges upon a harmonious interplay of components. This interplay, however, is not arbitrary; beneath the Gireh motifs lies a concealed layer, termed the "underlying generative tessellation," elucidating the overall order of Gireh compositions. This generative tessellation forms the basis for drawing Girehes, allowing the placement of various Gireh motifs. Given Shamseh's critical role, artists and masters assign diverse names to it based on the number of Shamseh points. This motif profoundly impacts the overall design, shaping its structure. The foundational stars of Gireh often stem from this process, frequently defined by the connection of midpoints in the underlying polygons, which in turn determines pattern lines.
Shamseh's significance extends beyond the individual motif to dictate the broader Gireh structure symbolically. Consequently, the angle of the Shamseh influences all Gireh motifs and determines their respective families. Three main categories of classification emerge based on the points' arrangement, encompassing eight-pointed, six- or twelve-pointed, and ten-pointed Girehes. Classification by Shamseh angles yields four categories: Acute, Median, Obtuse, and Two-point. In earlier times, artists relied on drawing rules grounded in circle divisions, lacking modern tools to measure line angles accurately. Consequently, Gireh angles were often determined through methods aligned with the number of Shamseh feathers or multiples thereof.
The connection between Shamseh points and Gireh's structure is profound; assuming a Shamseh point count corresponds to a radial division of the circle, the number of Shamseh points shapes the angle structure of the entire pattern family. With α and β representing the angles of Shamseh lines, and P denoting the number of divisions in the pattern family, while F signifies the division number modulus in the Gireh family, the relationship can be expressed as follows:
α = β = F/P × 360° = A°
This circle division modulation closely corresponds with the fundamental polygons of Girehs. Classification of Gireh families rests on the base polygon, relying on connections of line segments between points on the polygon's sides. Regular polygons can be circumscribed within a circle, aligning the modularization of node families with radial divisions. This arrangement is evident in six-, eight-, ten-, and twelve-point Girehs. If the modularization equals the distance of one unit from the middle points in the base polygon, it's classified as Acute. Similarly, if the distance equals two units, it's Median. For a three-unit gap, it's considered Obtuse. Finally, the placement of Gireh lines at 1/4 of the polygon's sides or vertices, instead of the middle point, signifies the Two-point family.
Evidence of Gireh's historical reliance on polygon techniques is further demonstrated by the alignment of angles in Gireh families with the angles formed by lines at the polygons' midpoints. Gireh designers effectively harnessed polygons' geometric structure to craft intricate Gireh patterns within an encompassing framework known as the underlying generative tessellation. The division of the circle directly corresponds to the base polygon's grid system. The number of fold divisions dictates the base polygon's sides – a 12-fold division corresponds to a dodecagon, a 10-fold division to a decagon, and an 8-fold division to an octagon. Acute, Median, and Obtuse families are harmoniously woven using lines connecting midpoints in the primary polygon through a generative tessellation. Correspondingly, the Two-point family neatly aligns with the polygonal structure, deviating from the middle point to formulate patterns based on distances from middle points to vertices.
 

Keywords

Main Subjects


  1. منابع

    امین‌پور، احمد؛ اولیا، محمدرضا؛ ابوئی، رضا و حاجبی، بیتا (1395). ارایه دو روش جدید در ترسیم گره و مقایسه آن‌ها، انجمن علمی معماری و شهرسازی ایران، شماره 11، 67-83.

    بوزجانی، ابوالوفاء محمد بن محمد البوزجانی (بی‌تا). فی مایحتاج الیه العمال و الصنّاع من الاشکال الهندسیه، آرشیو در کتابخانه ایاصوفیه. کد 2752.

    بونر، جی (1400). الگوهای هندسی اسلامی؛ توسعه تاریخی و روش‌های سنتی ساخت، ترجمه احد نژاد ابراهیمی و عارف عزیزپور شوبی، تبریز: دانشگاه هنر اسلامی.

    حلی، سید علی‌اکبر (1365). گره‌ها و قوس‌ها در معماری اسلامی، کاشان: حلی.

    دهشتی، مجید؛ مهدی خوش‌نژاد و منان رئیسی، محمد (1398). روشی نو در ترسیم نقش‌مایه‌های گره ده تند و کند، نگره، دوره 14، شماره 51، 53- 63.

    زمرشیدی، حسین (1365). گره چینی در معماری اسلامی و هنرهای دستی، شیراز: دانشگاه شیراز.

    شعرباف، اصغر (1385). گره و کاربندی، تهران: سازمان میراث فرهنگی.

    شفایی، جواد (1399). هنر گره‌سازی در معماری و درودگری، تهران: انجمن آثار و مفاخر فرهنگی.

    شفیع‌زاده، اسدالله و سلطان‌محمدلو، سعیده (1399). ارایه مدل گام به گام روش ترسیم گره بر مبنای خرد کردن (زایندگی)، نگره، دوره 15، شماره 54، 77- 93.

    شیروانی، محمدرضا (1401). «حَسبا» شیوه ترسیم نقوش هندسی اسلامی مراکش در مقایسه با شیوه شعاعی ایرانیان، مبانی نظری هنرهای تجسمی، دوره 7، شماره 2، 28- 39.

    گلیار، محمد (1399). دفتر گره: روش طراحی گره‌ها در معماری اسلامی ایران، تهران: میراث اهل قلم.

    لرزاده، حسین (1374). احیای هنرهای از یاد رفته؛ مبانی معماری سنتی در ایران، تدوین مهناز رئیس‌زاده و حسین مفید، تهران: مولی.

    ماهرالنقش، محمود (بی‌تا). طرح و اجرای نقش در کاشیکاری ایران دوره اسلامی؛ دفتر اول گره کشی، بی‌جا‌.

    منتظر، بهناز و سلطان زاده، حسین (1397). بازتاب نقش پنج ضلعی منتظم در نقوش هندسی معماری اسلامی ایران، مطالعات هنر اسلامی. دوره 14، شماره 30، 15- 40.

    مومنی، کوروش و مسعودی، زهره (1395). رابطه فرهنگ و معماری (با بررسی موزه هنرهای معاصر تهران)، جلوه هنر، دوره 8، شماره 1، 67- 82.

     

    نجیب‌اوغلو، گل‌رو (1379). هندسه و تزیین در معماری اسلامی، ترجمه مهرداد قیومی بیدهندی، تهران: روزنه.

    نژادابراهیمی، احد و عزیزپور شوبی، عارف (1401). کاربرد لایه پنهان در توسعه گره‌چینی بر مبنای مستندات تاریخی در ایران، مبانی نظری هنرهای تجسمی، دوره 8، شماره 1، 101- 116.

    نوایی، کامبیز و حاجی قاسمی، کامبیز (1390). خشت و خیال؛ شرح معماری اسلامی ایران، تهران: سروش.

    ولی‌بیگ، نیما؛ نوشین نظریه و رهروی پوده، ساناز (1396). مطالعه مقایسه‌ای گره مادر در گستره شیوه‌های ترسیم با ارایه و معرفی شیوه‌ای نامکتوب، تاریخ علم، دوره 15، شماره 2، 251- 274.

    References

    1. Aminpour, A., Olia, M. R., Abuee. R., Hajebi, B., (2016). The Presentation of Two New Methods in Drawing Gireh: A Comparison Study. Journal of Iranian Architecture & Urbanism(JIAU), 7(1), -. (Text in Persian). https://www.doi.org/10.30475/isau.2017.62018
    1. Al Ajlouni, R. (2012). The global long-range order of quasi-periodic patterns in Islamic architecture. Acta Crystallographica, A68, 235–243. doi:10.1107/S010876731104774X
    2. Bonner, J., (2021). Islamic Geometric Patterns, Translated By Ahad Nejad Ebrahimi & Aref Azizpour Shoubi. Tabriz: Islamic Art University. (Text in Persian)
    3. Bonner, J., Craig S. K., (2017). “4 Computer Algorithms for Star Pattern Construction.” In Islamic Geometric Patterns, 549–73. New York: Springer. https://doi.org/10.1007/978-1-4419-0217-7_4.
    4. Buzjani, M. (-). Kitāb fī māyah˙tāj ilayh al-Şāniʿ min al-ámāl al-handasia. Archive in Hagia Sophia Library. Code 2752. (Text in Arabic)
    5. Broug, E., (2013). Islamic geometric design, London: Thames & Hudson.
    6. Castera, J. M., (2021). TOND to TOND: Self-Similarity of Persian TOND Patterns, Through the Logic of the X-Tiles. In Handbook of the Mathematics of the Arts and Sciences. doi:10.1007/978-3-319-57072-3_58
    7. Critchlow, K., (1976). Islamic patterns: An analytical and cosmological approach, London: Thames and Hudson.
    8. Cromwell, P. R., (2012). Analysis of a multilayered geometric pattern from the Friday Mosque in Yazd. Journal of Mathematics and the Arts, 6(4). https://doi.org/10.1080/17513472.2012.736816
    9. Cromwell, P. R., (2010). “Islamic Geometric Designs from the Topkap Scroll II: A Modular Design System.” Journal of Mathematics and the Arts, 4 (3). https://doi.org/10.1080/17513470903311685
    10. Deheshti, M., Khosh Nejad, M., Mannan Raeesi, M. A., (2019). New Method for Depicting the Motifs of Acute and Obtuse 10 Point Girih. Negareh Journal, 14(51): 53-63. (Text in Persian). https://doi.org/10.22070/negareh.2019.3481.1947
    11. El-Said, I,. Parman, A. (1989). Geometric Concepts in Islamic Art, Portland: Dale Seymour.
    12. Gulyar, M. (2021). Gireh Book, The method of Design Gireh in Iranian Islamic architecture, Tehran: Miras ahle Qalam. (Text in Persian).
    13. Hankin, E. (1925). The drawing of geometric patterns in saracenic art, Calcutta: Government of India. Retrieved from https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+Drawing+of+Geometric+Patterns+in+Saracenic+Art.+Memoires+of+the+Archaeological+Society+of+India&btnG
    14. Lorzadeh, H. (2014). Ehya-ye Honar Ha-ye Az Yad Rafteh (Revival of Forgotten Arts), Tehran: Molavi. (Text in Persian).
    15. , S. A. (1986). Gireh and Arch in Islamic Architecture, Kashan: Heli. (Text in Persian).
    16. Kaplan, C. S., (2000). “Computer Generated Islamic Star Patterns.” Bridges.
    17. Kaplan, C. S., Salesin, D H. (2004). “Islamic Star Patterns in Absolute Geometry.” ACM Transactions on Graphics, 23 (2): 97–119. https://doi.org/10.1145/990002.990003
    18. Kappraff, J., (2001). Connections; The Geometric Bridge between Art and Science, 2nd Edition, Singapore, New Jersey, London, Hong Kong: World Scientific.
    19. Khamjane, A., Benslimane, R., Ouazene, Z., (2019). Method of Construction of Decagonal Self‑Similar Patterns. Nexus Netw J, 22, 507–520 (2020). https://doi.org/10.1007/s00004-019-00461-4
    20. Nava’I, K., Kambiz Haji Qassemi, K., (2011). Khesht-o Khial; An Interpretation of Iranian Islamic Architecture, Tehran: Soroush. (Text in Persian).
    21. Necipoğlu, G., (2017). The Arts of Ornamental Geometry. BRILL. doi:10.1163/9789004315204
    22. Necipoğlu, G., & Al-Asad, M., (1995). The Topkapı Scroll: Geometry and Ornament in Islamic Architecture: Topkapı Palace Museum Library MSNo Title, Los_Angeles: Getty Center for the History of Art and the Humanities. doi:9780892363353
    23. Nejad Ebrahimi, A., Azizpour Shoubi, A. (2023). 'Application of the hidden layer in the development of Gireh based on Iranian Historical Documentation and monuments' [in Farsi], Theoretical Principles of Visual Arts, (), pp. -. (Text in Persian). https://doi.org/10.22051/jtpva.2022.38900.1376
    24. Nejad Ebrahimi, A,. & Azizpour Shoubi, A. (2020). The Projection Strategies of Gireh on the Iranian Historical Domes. Mathematics Interdisciplinary Research, 5(3), 239–257. doi:10.22052/mir.2020.212903.1187
    25. Mahr al-Naghsh, Mahmoud (-). Designing and execution of motif in Iranian tiling of the Islamic period; the first book of Gireh. (Text in Persian).
    26. Montazer, B., Soltan Zadeh, H., (2018). 'Reflecting the Regular Pentagon Role in Geometric Patterns of Islamic Architecture of Iran', Islamic Art Studies, 14(30), pp. 15-40. (Text in Persian). https://www.doi.org/10.22034/ias.2018.91746
    27. Momeni, K., Masoudi, Z., (2016). 'The relationship between culture and architecture (case study: Tehran Museum of Contemporary Art)', Glory of Art (Jelve-y Honar) Alzahra Scientific Quarterly Journal, 8(1), pp. 67-82. https://doi.org/10.22051/jjh.2016.2404
    28. Sarhangi, R., (2012). “Interlocking Star Polygons in Persian Architecture: The Special Case of the Decagram in Mosaic Designs.” Nexus Network Journal, 14 (2): 345–72. https://doi.org/10.1007/s00004-012-0117-5
    29. Shafaei, J (2020). The art of Gireh work in architecture and carpentry, Tehran: Anjuman Asar and Mafakher (Association of Cultural Works and Honors). (Text in Persian).
    30. Shafizade, A., Soltan Mohammadlo, S. (2020). 'Presentation of the Step by step Model of Knot Drawing Method based on the Principle of Grinding (Generative)', Negareh Journal, 15(54), pp. 77-93. (Text in Persian). https://doi.org/10.22070/negareh.2020.1239
    31. Sharbaf, A., (2006). Gireh and Karbandi; Volume I. Tehran: Cultural Heritage Organization. (Text in Persian).
    32. Shirvani, M. R., (2022). '"Hasba" The Method of Drawing Islamic Geometric Patterns in Morocco in Comparison with the Traditional Iranian Radial Method', Theoretical Principles of Visual Arts, 7(2), pp. 28-39. (Text in Persian). https://doi.org/10.22051/jtpva.2022.38861.1374
    33. Swoboda, E., Vighi, P., (2016). Early Geometrical Thinking in the Environment of Patterns, Mosaics and Isometries, ICME-13 Topical Surveys. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-44272-3
    34. Taganap, E C., Antonette N. De Las Peñas, M. L., (2018). “Hyperbolic Isocoronal Tilings.” Journal of Mathematics and the Arts, 12 (2–3): 96–110. https://doi.org/10.1080/17513472.2018.1466432
    35. valibeig, N., Nazarieh, , Rahravi,  S., (2018). Comparing Study of Mother Gireh in the Drawing Methods Domain, with Offering an Unwrtiten Method. Journal for the History of Science, 15(2), 251–274. (Text in Persian). https://doi.org/10.22059/jihs.2019.237807.371406
    36. Willson, J., (1983). Mosaic and Tessellated Patterns: How to Create Them, with 32 Plates to Color, United Kingdom: Dover Publications.
    37. Zumarshidi, H., (1986). Gireh works in Islamic architecture and handicrafts, Tehran: University Publication Center. (Text in Persian).